HumanAgent Interface

atari_env

Atari Environment



Integration of Atari 2600 games with the OpenEnv framework via the Arcade Learning Environment (ALE). ALE provides access to 100+ classic Atari games for RL research.

Supported Games



ALE supports 100+ Atari 2600 games including:

Popular Games


  • Pong - Classic two-player tennis

  • Breakout - Break bricks with a ball

  • Space Invaders - Shoot descending aliens

  • Pac-Man / Ms. Pac-Man - Navigate mazes and eat pellets

  • Asteroids - Destroy asteroids in space

  • Defender - Side-scrolling space shooter

  • Centipede - Shoot segmented centipede

  • Donkey Kong - Jump over barrels to save princess

  • Frogger - Cross road and river safely

  • Q*bert - Jump on pyramid cubes


  • And many more! For a complete list, see [ALE documentation](https://ale.farama.org/environments/complete_list/).

    Architecture



    ┌────────────────────────────────────┐
    │ RL Training Code (Client) │
    │ AtariEnv.step(action) │
    └──────────────┬─────────────────────┘
    │ HTTP
    ┌──────────────▼─────────────────────┐
    │ FastAPI Server (Docker) │
    │ AtariEnvironment │
    │ ├─ Wraps ALEInterface │
    │ ├─ Handles observations │
    │ └─ Action execution │
    └────────────────────────────────────┘


    Installation & Usage



    Option 1: Local Development (without Docker)



    Requirements:
  • Python 3.11+

  • ale-py installed: pip install ale-py


  • from envs.atari_env import AtariEnv, AtariAction

    Start local server manually


    python -m envs.atari_env.server.app



    Connect to local server


    env = AtariEnv(base_url="http://localhost:8000")

    Reset environment


    result = env.reset()
    print(f"Screen shape: {result.observation.screen_shape}")
    print(f"Legal actions: {result.observation.legal_actions}")
    print(f"Lives: {result.observation.lives}")

    Take actions


    for _ in range(10):
    action_id = 2 # UP action
    result = env.step(AtariAction(action_id=action_id, game_name="pong"))
    print(f"Reward: {result.reward}, Done: {result.done}")
    if result.done:
    break

    Cleanup


    env.close()


    Option 2: Docker (Recommended)



    Build Atari image:

    cd OpenEnv

    Build the image


    docker build \
    -f src/envs/atari_env/server/Dockerfile \
    -t atari-env:latest \
    .


    Run specific games:

    Pong (default)


    docker run -p 8000:8000 atari-env:latest

    Breakout


    docker run -p 8000:8000 -e ATARI_GAME=breakout atari-env:latest

    Space Invaders with grayscale observation


    docker run -p 8000:8000 \
    -e ATARI_GAME=space_invaders \
    -e ATARI_OBS_TYPE=grayscale \
    atari-env:latest

    Ms. Pac-Man with full action space


    docker run -p 8000:8000 \
    -e ATARI_GAME=ms_pacman \
    -e ATARI_FULL_ACTION_SPACE=true \
    atari-env:latest


    Use with from_docker_image():

    from envs.atari_env import AtariEnv, AtariAction
    import numpy as np

    Automatically starts container


    env = AtariEnv.from_docker_image("atari-env:latest")

    result = env.reset()
    result = env.step(AtariAction(action_id=2)) # UP

    Reshape screen for visualization


    screen = np.array(result.observation.screen).reshape(result.observation.screen_shape)
    print(f"Screen shape: {screen.shape}") # (210, 160, 3) for RGB

    env.close() # Stops container


    Observation Types



    1. RGB (Default)


  • Shape: [210, 160, 3]

  • Description: Full-color screen observation

  • Usage: Most realistic, good for vision-based learning


  • docker run -p 8000:8000 -e ATARI_OBS_TYPE=rgb atari-env:latest


    2. Grayscale


  • Shape: [210, 160]

  • Description: Grayscale screen observation

  • Usage: Reduced dimensionality, faster processing


  • docker run -p 8000:8000 -e ATARI_OBS_TYPE=grayscale atari-env:latest


    3. RAM


  • Shape: [128]

  • Description: Raw 128-byte Atari 2600 RAM contents

  • Usage: Compact representation, useful for specific research


  • docker run -p 8000:8000 -e ATARI_OBS_TYPE=ram atari-env:latest


    Action Spaces



    Minimal Action Set (Default)


    Game-specific minimal actions (typically 4-9 actions).
  • Pong: 6 actions (NOOP, FIRE, UP, DOWN, etc.)

  • Breakout: 4 actions (NOOP, FIRE, LEFT, RIGHT)


  • docker run -p 8000:8000 -e ATARI_FULL_ACTION_SPACE=false atari-env:latest


    Full Action Set


    All 18 possible Atari 2600 actions:
    0. NOOP
    1. FIRE
    2. UP
    3. RIGHT
    4. LEFT
    5. DOWN
    6. UPRIGHT
    7. UPLEFT
    8. DOWNRIGHT
    9. DOWNLEFT
    10. UPFIRE
    11. RIGHTFIRE
    12. LEFTFIRE
    13. DOWNFIRE
    14. UPRIGHTFIRE
    15. UPLEFTFIRE
    16. DOWNRIGHTFIRE
    17. DOWNLEFTFIRE

    docker run -p 8000:8000 -e ATARI_FULL_ACTION_SPACE=true atari-env:latest


    Configuration



    Environment Variables



  • ATARI_GAME: Game name (default: "pong")

  • ATARI_OBS_TYPE: Observation type - "rgb", "grayscale", "ram" (default: "rgb")

  • ATARI_FULL_ACTION_SPACE: Use full action space - "true"/"false" (default: "false")

  • ATARI_MODE: Game mode (optional, game-specific)

  • ATARI_DIFFICULTY: Game difficulty (optional, game-specific)

  • ATARI_REPEAT_ACTION_PROB: Sticky action probability 0.0-1.0 (default: "0.0")

  • ATARI_FRAMESKIP: Frames to skip per action (default: "4")


  • Example: Breakout with Custom Settings



    docker run -p 8000:8000 \
    -e ATARI_GAME=breakout \
    -e ATARI_OBS_TYPE=grayscale \
    -e ATARI_FULL_ACTION_SPACE=true \
    -e ATARI_REPEAT_ACTION_PROB=0.25 \
    -e ATARI_FRAMESKIP=4 \
    atari-env:latest


    API Reference



    AtariAction



    @dataclass
    class AtariAction(Action):
    action_id: int # Action index to execute
    game_name: str = "pong" # Game name
    obs_type: str = "rgb" # Observation type
    full_action_space: bool = False # Full or minimal action space


    AtariObservation



    @dataclass
    class AtariObservation(Observation):
    screen: List[int] # Flattened screen pixels
    screen_shape: List[int] # Original screen shape
    legal_actions: List[int] # Legal action indices
    lives: int # Lives remaining
    episode_frame_number: int # Frame # in episode
    frame_number: int # Total frame #
    done: bool # Episode finished
    reward: Optional[float] # Reward from last action


    AtariState



    @dataclass
    class AtariState(State):
    episode_id: str # Unique episode ID
    step_count: int # Number of steps
    game_name: str # Game name
    obs_type: str # Observation type
    full_action_space: bool # Action space type
    mode: Optional[int] # Game mode
    difficulty: Optional[int] # Game difficulty
    repeat_action_probability: float # Sticky action prob
    frameskip: int # Frameskip setting


    Example Script



    #!/usr/bin/env python3
    """Example training loop with Atari environment."""

    import numpy as np
    from envs.atari_env import AtariEnv, AtariAction

    Start environment


    env = AtariEnv.from_docker_image("atari-env:latest")

    Training loop


    for episode in range(10):
    result = env.reset()
    episode_reward = 0
    steps = 0

    while not result.done:
    # Random policy (replace with your RL agent)
    action_id = np.random.choice(result.observation.legal_actions)

    # Take action
    result = env.step(AtariAction(action_id=action_id))

    episode_reward += result.reward or 0
    steps += 1

    # Reshape screen for processing
    screen = np.array(result.observation.screen).reshape(
    result.observation.screen_shape
    )

    # Your RL training code here
    # ...

    print(f"Episode {episode}: reward={episode_reward:.2f}, steps={steps}")

    env.close()


    Testing



    Local Testing



    Install dependencies


    pip install ale-py fastapi uvicorn requests

    Start server


    cd /Users/sanyambhutani/OpenEnv/OpenEnv
    export PYTHONPATH=/Users/sanyambhutani/OpenEnv/OpenEnv/src
    python -m envs.atari_env.server.app

    Test from another terminal


    python -c "
    from envs.atari_env import AtariEnv, AtariAction
    env = AtariEnv(base_url='http://localhost:8000')
    result = env.reset()
    print(f'Initial obs: {result.observation.screen_shape}')
    result = env.step(AtariAction(action_id=2))
    print(f'After step: reward={result.reward}, done={result.done}')
    env.close()
    "


    Docker Testing



    Build and run


    docker build -f src/envs/atari_env/server/Dockerfile -t atari-env:latest .
    docker run -p 8000:8000 atari-env:latest

    Test in another terminal


    curl http://localhost:8000/health
    curl -X POST http://localhost:8000/reset


    Popular Games and Their Characteristics



    | Game | Minimal Actions | Lives | Difficulty | Notes |
    |------|----------------|-------|-----------|-------|
    | Pong | 6 | 1 | Low | Good for learning basics |
    | Breakout | 4 | 5 | Medium | Classic RL benchmark |
    | Space Invaders | 6 | 3 | Medium | Shooting game |
    | Ms. Pac-Man | 9 | 3 | High | Complex navigation |
    | Asteroids | 14 | 3 | Medium | Continuous shooting |
    | Montezuma's Revenge | 18 | 5 | Very High | Exploration challenge |
    | Pitfall | 18 | 1 | High | Platformer |
    | Seaquest | 18 | 3 | High | Submarine rescue |

    Limitations & Notes



  • Frame perfect timing: Some games require precise timing

  • Exploration: Games like Montezuma's Revenge are notoriously difficult

  • Observation delay: HTTP adds minimal latency vs local gym

  • Determinism: Set ATARI_REPEAT_ACTION_PROB=0.0 for deterministic behavior

  • ROMs: All ROMs are bundled with ale-py package


  • References



  • [Arcade Learning Environment Paper (2013)](https://jair.org/index.php/jair/article/view/10819)

  • [ALE GitHub](https://github.com/Farama-Foundation/Arcade-Learning-Environment)

  • [ALE Documentation](https://ale.farama.org/)

  • [Gymnasium Atari Environments](https://gymnasium.farama.org/environments/atari/)


Citation



If you use ALE in your research, please cite:

@Article{bellemare13arcade,
author = {{Bellemare}, M.~G. and {Naddaf}, Y. and {Veness}, J. and {Bowling}, M.},
title = {The Arcade Learning Environment: An Evaluation Platform for General Agents},
journal = {Journal of Artificial Intelligence Research},
year = "2013",
month = "jun",
volume = "47",
pages = "253--279",
}

Take Action

The action ID to execute in the environment
Name of the game or environment

Current State

Status: Not initialized
Episode ID: -
Step Count: 0
State Observer

Current Observation

No observation yet

Action History

No actions taken yet